Category Archives: Mass Finishing

Forge & Foundry, Part 1 – Shot Blasting Systems

Getting castings and forgings ready for the subsequent processing steps presents some of the toughest surface finishing challenges. Shot blasting machines can handle all of these tasks from removing residual sand, casting shells, flashing, die marks, or scale. Whether cast iron, steel, stainless steel, super alloys, titanium, aluminum, zinc, or magnesium, the comprehensive portfolio of Rosler Metal Finishing blasting systems for the foundry industry enables the optimal process for any requirement.

Shot blasting is an essential part of most forge and foundry operations and has been used since the late 1800s. This specialized surface finishing process throws small metal (or mineral) pellets, called blast media, onto the surface of a work piece at incredibly high speeds, ranging from 200-800 feet per second. The impact on the work pieces from this process is what blasts the contaminants from the parts and produces the desired surface finishing effect.

When properly applied prior to finishing, blasting achieves three key aspects of the finishing process:

  1. Cleans and descales surfaces
  2. Creates a uniform texture on the part and blends the surface
  3. Enhances paint adhesion
Continue reading Forge & Foundry, Part 1 – Shot Blasting Systems

Spinal Implants, Part 2 – Processed to Perfection

Along with the material choice discussed in Part 1 of our Spinal Implants series, surface treatment is the most important factor affecting the functionality, performance, and longevity of spinal implants and instruments.

During the manufacturing process they may have to undergo multiple finishing operations including burr removal from previous manufacturing operations, rounding of sharp edges, general surface cleaning, surface smoothing, and, frequently, high gloss polishing.

Treatment steps can also include surface texturing/profiling and shot peening, areas Rosler Metal Finishing has extensive experience in.

This blog post will focus on the finishing requirements and challenges of spinal implants as well as the solutions provided by mass finishing and shot blasting processes and the associated costs.

Continue reading Spinal Implants, Part 2 – Processed to Perfection

Medical Instruments, Part 2 – Mass Finishing or Shot Blasting, Which Technique is Best?

The medical industry is constantly looking for better, more suitable materials that will offer greater performance and longevity for medical devices, implants, and instruments while simultaneously searching for more efficient manufacturing technologies.

When it comes to surface finishing, such newly developed materials and manufacturing processes can pose considerable technical challenges. That’s why close cooperation between the medical device manufacturers and qualified surface treatment experts is essential during the development and prototyping phase.

In our last medical instrument blog, Rosler Metal Finishing discussed the surface finishing requirements for medical instruments. This blog will dive deeper into the techniques used in surface finishing and answer the question: What is the best type of surface finishing for medical instruments?

The short answer is a combination of mass finishing and shot blasting. Guidance for a surface finishing expert can help determine the best process – typically a series of processes – for a specific medical instrument.

Continue reading Medical Instruments, Part 2 – Mass Finishing or Shot Blasting, Which Technique is Best?

Spinal Implants, Part 1 – Surgical Specifications

Technological advances in medical equipment and implants have driven worldwide spinal implant sales to $10 billion annually.

Like orthopedic implants used for joint reconstruction and the surgical fixation of a bone fracture, spinal implants are subject to very specific and strict surface finishing requirements.

Mass finishing and shot blasting play a key role in creating the right finish for spinal implants, not only for intermediate surface treatment after forging, casting, machining, additive manufacturing, etc., but also for placing the final surface finish before implantation.

Rosler Metal Finishing has extensive experience in surface finishing spinal implants using mass finishing, shot blasting, and a combination of both methods.

In a series of posts, we’ll analyze the specific surface finishing requirements for spinal implants based on their functional and performance characteristics and describe the respective mass finishing and shot blasting equipment and methods available to fulfill these requirements.

Continue reading Spinal Implants, Part 1 – Surgical Specifications

Medical Instruments, Part 1 – Surface Finishing Requirements for Medical Instruments

Rosler Metal Finishing understands that medical instruments are subject to stringent quality standards. Whether during an office visit or a complicated surgery, material defects or malfunctions may create dangerous and even fatal consequences for patients and healthcare workers alike. Providing precise and durable surface finishes  for work pieces used in the medical industry is one of our passions.

In a series of blog posts, we’ll discuss the various technologies used for finishing the surface of medical instruments and how mass finishing and shot blasting play a key role, not only as intermediate steps but also for placing the final, finishing touch on these work pieces.

We begin with a basic question: What are the surface finishing requirements associated with medical instruments?

Materials Matter

Medical instruments are exposed to frequent use and subject to highly corrosive atmospheres caused by frequent sterilization in a steam pressure chamber, exposure to chlorine wipes, and ultrasonic cleaning. They must never fail. To minimize wear and prevent corrosion most medical instruments, especially surgical tools, are made from tough, slow wearing, corrosion-resistant, high-performance metal alloys including austenitic stainless steel, titanium, or cobalt chrome.

Continue reading Medical Instruments, Part 1 – Surface Finishing Requirements for Medical Instruments

Achieving Specific Finishes for Trauma Implants

In our last trauma implant blog, Rosler Metal Finishing discussed the materials used in trauma implants. From hip replacements to cranial plates, there are numerous uses for trauma implants; each with its own unique surface finishing needs and requirements.

Trauma implant manufacturers must achieve the necessary surface finish to ensure patient safety and best results. These finishing requirements can range from simple cleaning or deburring to surface smoothing and high-gloss polishing.

This blog will answer the question: What techniques are used to finish off trauma implants?

What types of finishes are used?

Trauma implants are subject to multiple finishing operations throughout the manufacturing process. After manufacturing steps including forging, blanking, machining, and thread cutting for screws, the workpieces usually undergo a surface cleaning (descaling, de-oiling), deburring, edge radiusing, or surface grinding operation, before they receive their final finish.

Continue reading Achieving Specific Finishes for Trauma Implants

The Importance of Material Selection in Trauma Implants

Rosler Metal Finishing understands that trauma implants and medical devices are subject to stringent quality standards. Any material defect or malfunction can have catastrophic consequences for a patient. That’s why we take our work in the trauma implant field very seriously.

Also known as osteosynthetic implants, trauma implants include pins, screws, and plates used to surgically fix a bone defect. Implant manufacturers must select the right material and attain the required surface finish to ensure patient safety and best results.

Spinal Rods & Screws

In a series of blog posts, we’ll answer the most common questions about trauma implant materials and finishes.

We begin with a basic question: What materials are used in trauma implants?

The answer, in short, is usually stainless steel or titanium.

Does the material performance affect the selection?

In order to select the best material, trauma implant manufacturers must understand the specific performance attributes of the implant they are creating. Implants are subject to very strict performance and reliability standards. Selected materials must act as bone stabilizers and healing support while meeting the following guidelines.

Continue reading The Importance of Material Selection in Trauma Implants

Optimal Media Mix, Part 2 – Understanding Media Consumption

As we established in Part 1 of this seriesidentifying and maintaining an optimal media mix is essential to realizing optimal mass finishing results. Rosler Metal Finishing  understands that our equipment must work in tandem with media to provide you with the desired finishing results.

Understanding how your machine, the work pieces it is finishing, and the selected media will interact is key to delivering an optimal finish each cycle. Doing so requires understanding media consumption factors in order to maintain an optimal media mix.

What are the Factors of Media Consumption?

Media consumption and wear rates depend on ten key parameters. These rates change if even one of the parameters below change. Therefore, quoted wear rates and cut rates are relative values only.

Media usage can only be estimated, the actual consumption can only be determined by the end user under exact process conditions.

Parameters affecting media consumption include:

Continue reading Optimal Media Mix, Part 2 – Understanding Media Consumption

Optimal Media Mix, Part 1 – Identifying and Maintaining Proper Levels

The best mass finishing equipment is useless without the proper media. That’s why the experienced engineers at Rosler Metal Finishing pair their quality equipment with the right type and amount of media to achieve consistent results.

Understanding how your machine, the work pieces it is finishing, and the selected media will interact is key to delivering an optimal finish each cycle. Doing so requires understanding why media levels are important, determining and tracking levels, and evaluating media consumption to avoid issues.

How do Media Levels Effect Processing?

Without a proper media level, a machine won’t work properly. Levels that are too high and too low can cause issues that result in poor processing results and unnecessary workpiece and machine damage.

Continue reading Optimal Media Mix, Part 1 – Identifying and Maintaining Proper Levels

Using Vibrascope to Measure Amplitude v. Frequency in Vibratory Bowls

When it comes to mass finishing, amplitude and frequency require balance and careful consideration.  Amplitude is a measure of movement and intensity while frequency refers to the rate of repetition.

The wrong amplitude, for example, if  it’s too low, can create a lackluster finishing results and longer processing times. If too high it can cause unnecessary wear and tear on the machine.

Creating Vibratory Energy

Whether rotary or tub style, mass finishing vibrators always include these two key components; a work bowl containing the finishing media and the work pieces. Firmly attached to this work bowl is a vibratory drive system generating the energy to put the mass of media and work pieces in motion. The work bowl with attached vibratory drive system sits on a number of coil springs – in some cases on air cushions – which in turn sit on a machine base. The springs, respectively, air cushions allow the work bowl to “free float” up and down within a certain distance.

vibratory drive
Example of vibratory drive 

The force from the vibratory drive system puts the mass of finishing media and work pieces contained in the work bowl in motion. Depending on the type of finishing machine this force is generated by vibratory motors or electric motors driving a shaft with one or multiple imbalance units attached to it.

Imbalance units are made up of a rotating shaft with out-of-balance counterweights at each end of the shaft. Due to its imbalance, the rotating shaft causes an intensive wobbling effect.

Common drive systems in vibratory bowls and tubs include foot motors for small tub vibrators, flange motors for rotary vibrators, and multiple imbalance units with electric drives for large tub vibrators.

Continue reading Using Vibrascope to Measure Amplitude v. Frequency in Vibratory Bowls