Category Archives: Medical

Orthopedic Implants, Part 4 – Finishers Meet Standards, Face New Challenges

While choosing the right implant material is of utmost importance, as discussed in our previous Orthopedic Implant Series post, the significance of optimum surface treatment throughout the entire implant manufacturing process cannot be overstated. This relates not only to the right surface finish, but also total compliance with the specified tight dimensional tolerances.

The functionality of an orthopedic implant is determined by the perfect match between the various implant components. This depends, to a large extent, on the surface treatment procedure(s).

With extensive experience in the medical industryRosler is an expert in designing systems and solutions for the treatment of joint reconstruction implants utilizing shot blasting and mass finishing technologies.

Our Orthopedic Implant Series continues with an overview of the stringent finishing standards for orthopedic implants.

Continue reading Orthopedic Implants, Part 4 – Finishers Meet Standards, Face New Challenges

Orthopedic Implants, Part 3 – Materials Must Provide Strength, Safety

For millions of individuals, orthopedic implants provide the ability to regain mobility and reduce pain. Just as surgical skill is required to implant these artificial joints, so is skillful construction and finish of the joint components themselves.

A leader in surface finishing for medical technologyRosler has extensive experience in shot blasting and mass finishing a wide range of medical devices from instruments to implants used specifically for joint replacement.

Our Orthopedic Implant Series continues with an overview of the most common materials used for these endoprosthetic implants.

Popular Materials

To date, the most common materials have been titanium, titanium alloys, and cobalt-chromium alloys. Both materials are very tough, resistant to corrosion, highly biocompatible, and absolutely reliable.

Continue reading Orthopedic Implants, Part 3 – Materials Must Provide Strength, Safety

Patient-Specific Implants Call for Equally Customized Processing

Advancements in medical technology now allow for the development of Patient-Specific Implants (PSI). Specialized computer programs analyze x-rays, ultrasound, and MRI images to create surgical guides, tools, and implants tailored to the patient’s unique anatomy.

While still emerging, many medical industry suppliers have received FDA approval for PSI use. Like traditional implants, these implants must be carefully finished once created to ensure the work piece meets stringent medical safety standards while promoting patient comfort and long wear life.

The benefits of PSI use include shorter surgery times, better surgical outcomes, and cost savings.

True to its “apply innovation” tagline, Renishaw’s Medical and Healthcare Division has found great success in additively manufacturing PSI. Using CT scan-to-CAD software, one of the company’s most innovative advances is creating cranial plates using titanium powder.

When determining how to finish the implants to precise medical requirements and surgical demands, Renishaw trusted Rosler for help with mass finishing.

Continue reading Patient-Specific Implants Call for Equally Customized Processing

Orthopedic Implants, Part 2 – Required Component Characteristics Define Finish

Joint reconstruction implants are subject to the same zero-defect performance and reliability standards as any other implant. However, because two components are always interacting with each other, dimensional accuracy is of particu­lar importance.

Within the medical industry, surface finishing experts such as Rosler assist implant manufacturers in achieving the exact finish needed for each surface of the joint.

In addition to increasing product popularity and demand for the manufacturer and providing medical professionals with safe and dependable joint replacements, ensuring that orthopedic implants have the exact finishing required enables the joint to function longer and more comfortably for the patient.

Continue reading Orthopedic Implants, Part 2 – Required Component Characteristics Define Finish

Orthopedic Implants, Part 1 – Surface Finishing Enhances Component Life, Function

Fueled by more active lifestyles and increased life expectancy,the market for knee, hip, and other replacement body jointsis on the rise. With more than $19 billion in annual worldwidesales, implants for joint reconstruction make up nearly 40 percentof all orthopedic product sales.

Thanks to significant advancements in materials and new or improvedsurface finishing technologies, today’s artificial hips andknees can last more than 20 years, giving the recipient decadesof comfort and agility.

Parts that are finished using modern mass finishing and shot blasting methods play a key role in extending the lifespan of orthopedic implants.

Rosler has extensive experience in these processes which often include cleaning, deburring/edge radiusing, surface smoothing, post-casting surface preparation, machining, CNC grinding, and, of course, final finishing. These finishing technologies make big differences in the quality and performance of such products.

Continue reading Orthopedic Implants, Part 1 – Surface Finishing Enhances Component Life, Function

Joint Reconstruction, Part 6 – Shot Blasting for Surface Finishing, Coating Preparation, and Increased Component Life Span

Like mass finishing, shot blasting is an exceptionally versatile surface treatment technology. Its applications range from general cleaning after casting and forging to shot peening and, even, cosmetic blasting for placing a fine, matte finish on the work pieces.

For shot blasting of orthopedic implants Rosler Metal Finishing recommends mainly air and occasionally wet blasting systems. The blast media is accelerated by compressed air and thrown at the work pieces through a blast nozzle, creating an extremely precise blast pattern compared to turbine blasting. Another advantage of air blasting is that it can be used with metallic, mineral as well as organic blast media.

These attributes and many more make this surface finishing method particularly useful in the medical industry

Continue reading Joint Reconstruction, Part 6 – Shot Blasting for Surface Finishing, Coating Preparation, and Increased Component Life Span

Joint Reconstruction, Part 5 – Mass Finishing for Smooth, polished surfaces

Mass finishing is a highly versatile finishing technology that can be used for a wide variety of different surface treatment operations including those in the medical industry. Therefore, it is no surprise that mass finishing processes are utilized at practically every manufacturing stage for all kinds of orthopedic implants.

Rosler Metal Finishing has decades of experience in mass finishing. In this installment of the Joint Reconstruction Series, we will compare the various machines used to provide precise finishing for endoprosthetic manufacturers.

Examples of Mass Finishing

Mass finishing is used for a variety of joint replacement work pieces including:

  • Descaling and edge radiusing of hip stems, knee femorals, and other implants after forging or casting, e.g. lost wax or investment casting. 
  • Deburring and surface smoothing of various implants after belt or CNC grinding.
  • Final polishing of knee femorals, femoral heads, and the inside of acetabular cups to Ra = 0.8 micro inches as the last finishing stage before implantation.
Continue reading Joint Reconstruction, Part 5 – Mass Finishing for Smooth, polished surfaces

Joint Reconstruction, Part 4 – Comparing Surface Finishing Methods

Shot blasting and mass finishing have become indispensable technologies for surface preparation and finishing of joint reconstruction implants. Their applications range from surface cleaning, deburring, edge radiusing after forging, casting, additive manufacturing, and machining to surface preparation for different kinds of coatings, shot peening for increasing the longevity of an implant, and placing an extremely smooth, high-gloss finish on the implants before they are inserted into the body.

Rosler Metal Finishing leverages its extensive experience in the medical industry to create customized solutions and equipment for the treatment of joint reconstruction implants.

This installment of the Joint Reconstruction Series will compare the working principles and features of utilizing shot blasting and mass finishing technologies for endoprosthetic implants.

Continue reading Joint Reconstruction, Part 4 – Comparing Surface Finishing Methods

Joint Reconstruction, Part 3 – Surface Finishing Standards

While choosing the right implant material is of utmost importance, as discussed in our previous Joint Reconstruction Series post, the significance of optimum surface treatment throughout the entire implant manufacturing process cannot be overstated.

This relates not only to the right surface finish – be it a high-gloss polish for low friction, a textured surface for easy osseointegration, or as preparation for subsequent coating, rounded edges, etc. – but also total compliance with the specified tight dimensional tolerances. The success of a joint implant is determined by the perfect match between the various implant components. This depends, to a large extent, on the surface treatment procedure(s).

With extensive experience in the medical industry, Rosler Metal Finishing is an expert in designing systems and solutions for the treatment of joint reconstruction implants utilizing shot blasting and mass finishing technologies.

Our Joint Reconstruction Series continues with an overview of the stringent finishing standards for endoprosthetic implants.

Continue reading Joint Reconstruction, Part 3 – Surface Finishing Standards

Joint Reconstruction, Part 2 – Material Standards

Joint reconstruction implants allow millions of individuals to regain mobility and reduce pain. Just as surgical skill is required to implant these artificial joints, so is skillful construction and finish of the joint components themselves.

A leader in surface finishing for medical technology, Rosler Metal Finishing has extensive experience in shot blasting and mass finishing a wide range of medical devices from instruments to implants used specifically for joint replacement.

Our Joint Reconstruction Series continues with an overview of the most common materials used for these endoprosthetic implants.

Material Standards

The most common materials used for joint reconstruction implants are currently titanium and titanium alloys and cobalt-chromium alloys. Both materials are very tough, corrosion-resistant, highly biocompatible, and have proven themselves to be absolutely reliable.

Continue reading Joint Reconstruction, Part 2 – Material Standards