Tag Archives: Process Water

Mass Finishing Process Water, Part 2 – Maintain Adequate Drainage to Protect Your System

Numerous functions and calibrations factor into developing a precise and stable mass finishing process. From media and compounds to work piece characteristics and processing times, successful finishing requires each process aspect to be carefully monitored and evaluated. When it comes to process water flow rates, poor drainage from the machine can cause quality control issues as well as equipment damage and costly downtime.

While simple in their function, drains play an integral role in regulating the flow of process water out of the machine. With the exception of intentional “flooding” of the process bowl for sharp work pieces, the same amount of compound and water entering the machine must be flushed out again. Otherwise, contaminants in the form of dirt, media, metal fines, and, frequently, oil will accumulate in the process water. Since this buildup can cause the finishing process to deteriorate and even collapse, mass finishing machines must have sufficient drainage!

With more than 80 years of experience, Rosler can expertly design mass finishing technology and troubleshoot issues to protect your system for the life of the machine.

Machine Features

Most mass finishing machines, including rotary and tub vibrators and drag‐, plunge‐, and surf‐finishers have special drainage screens built into their work bowls. High-energy centrifugal disc finishing machines differ since the “dirty” process water is evacuated through the gap between spinner and work bowl.

Drain types used in rotary vibrators.

Made from plastic such as polyurethane or stainless steel material, these drains must allow process water and media debris to be flushed from the system while retaining usable media mix and the work pieces.

Continue reading Mass Finishing Process Water, Part 2 – Maintain Adequate Drainage to Protect Your System

Mass Finishing Process Water, Part 1 – Understand When to Balance Flow or Flood the Process Bowl

Maintaining the correct compound and water flow rate into a mass finishing machine is essential for the stability and success of a process.

If inadequate compound and water are supplied to the machine, results will be more extreme and lead to unpredictable processing times, ineffective finishing, dirty work pieces after finishing, glazed media, and, potentially, a total collapse of the process.

Excessive compound and water flow can be equally problematic. Too much water and compound will slow down the movement of media and work pieces in the machine or cause a complete stop.

For example, in rotary vibrators the typical spiral movement of the media/work piece mix will give way to an uncontrolled shaking. In centrifugal disc machines, the rotating spinner will slip under the media/work piece mix with no movement at all.

Longer processing times, poor finishing results, and even a complete collapse of the process can occur.

For the best results and stability, Rosler understands that the flow rate of compound and water into the machine must be equal to the flow rate out of the machine.

Continue reading Mass Finishing Process Water, Part 1 – Understand When to Balance Flow or Flood the Process Bowl

Mass Finishing Water & Compounds, Part 1 – Identifying, Correcting Hard and Soft Water Issues

Achieving the desired surface conditions in a mass finishing process requires the machinery, consumables, compounds, and process water to work together in a balanced manner. Independent of the other process elements, the process water itself must be evaluated for hard and soft water issues.

Rosler has more than six decades of experience designing mass finishing machinery, supplying consumables and compounds, and developing processes. Understanding the ramifications of too hard or too soft process water is a key to our success.

Classifications and Measurements

Depending on its geological source, the water used in mass finishing processes may have varying mineral content levels, specifically calcium and magnesium carbonates, bicarbonates, and sulfates. A high amount of mineral content is used to classify the water as “hard”, whereas low mineral content classifies it as “soft”.

Continue reading Mass Finishing Water & Compounds, Part 1 – Identifying, Correcting Hard and Soft Water Issues

Automation, Part 6—Environmental Considerations of Automation

Technology has transformed almost every aspect of life and the shop floor is no exception. As explored in previous Automation Blog Series posts, Rosler Metal Finishing believes automation represents the new norm in mass finishing and shot blasting. In the face of increasing competition, manufacturing interests will continue to demand lower cost, higher efficiency, and greater flexibility from their chosen surface finishing partner.

Though it would appear that any downsides of automation are outweighed by its benefits, there’s a delicate balance to be struck when it comes to a symbiotic relationship with the world outside of the machine. Having previously discussed how human effort and ingenuity will work in harmony with automated processes, we now turn our attention to environmental considerations—namely, how automated machines used in mass finishing and shot blasting can impact the earth’s resources, and how manufacturers can mitigate that impact.

The International Institute for Sustainable Development notes that the rise of automation has thrust us into a “Fourth Industrial Revolution,” citing energy use, resource use, and ecosystems as the three most critical factors to watch as more automated processes are implemented.

These are important considerations, given that manufacturers often are targeted in headlines about waterway pollution and even global warming, but responsible manufacturing practices can help avoid the most egregious impacts and keep manufacturing operations in compliance.

Continue reading Automation, Part 6—Environmental Considerations of Automation

Compounds are Key to Mass Finishing Success

Machinery and media are nothing in the mass finishing world without the right compound.

A manufactured object can be designed to specifications, but if it doesn’t look and feel finished, it may be rejected.  A metal alloy can be structurally perfect, but surface corrosion may make it less presentable. Process water may work well for initial cycles before contaminants wear down its effectiveness over time.

The right compound for a given mass finishing process can solve each of these problems and more.

Read more about mass finishing compounds